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Abstract 

 
An analytical solution to the steady-state fluid temperature for 1-D transpiration cooling 
has been derived.  Transpiration cooling has potential use in the aerospace industry for 
protection against high heating environments for re-entry vehicles.  Literature for 
analytical treatments of transpiration cooling has been largely confined to the assumption 
of thermal equilibrium between the porous matrix and fluid.  In the present analysis, the 
fundamental fluid and matrix equations are coupled through a volumetric heat transfer 
coefficient and investigated in non-thermal equilibrium.  The effects of varying the 
thermal conductivity of the solid matrix and the heat transfer coefficient are investigated.  
The results are also compared to existing experimental data. 
 
Introduction 
 
Transpiration cooling is the process of injecting a fluid (generally serving as a coolant) 
into a porous matrix, which could serve as a protective barrier against high temperature 
environments for a re-entry vehicle.  In order to utilize a transpiration cooling analysis 
approach to solving physical applications, a well-developed understanding of the heat 
transfer and fluid flow characteristics must be obtained.  In the report by J.C.Y. Koh et. 
al. “Investigation of Fluid Flow and Heat Transfer in Porous Matrices for Transpiration 
Cooling”, the fundamental equations for steady state transpiration cooling are stated [1].  
However, the solution of the fluid temperature distribution generates results that are not 
consistent with the physical model requirements as a result of the lack of formal 
boundary conditions.  The results of which can create conditions that violate energy 
conservation.  Therefore, an investigation of the fluid temperature solution presented by 
Koh is conducted to understand the inconsistencies with the model, and derive an 
alternative fluid temperature solution.  Once these steady state transpiration equations 
have been established, they can be used as a guide for understanding behavior of heat 
transfer in porous matrices and also for further transient studies of transpiration cooling. 
 
Transpiration cooling has been treated in the literature by numerous authors. Heat 
conduction textbooks generally treat transpiration cooling with the assumption of thermal 
equilibrium between the matrix and fluid.  The assumption leads to defining an effective 
conductivity for the fluid and solid matrix [2].  Curry and Cox conducted numerical 
studies of the transient effects of transpiration cooling [3].  Using a non-equilibrium 
solution, they determined that for a high conductivity of the solid matrix, the equilibrium 
solution is a valid assumption. However, the lower the conductivity of the solid, the more 
desperate the fluid solution diverges from that of the solid.  Additionally, the volumetric 



heat transfer coefficient does not affect the response significantly compared to the 
thermal conductivity of the solid matrix [3].   
 
Transpiration Cooling Model 
 
The physical model utilized in Koh’s report is used in this analysis.  A flat plate with 
finite thickness, L, shown in Figure 1, is used for the derivation of the steady state fluid 
and matrix temperature distributions.  The analysis is based on a one-dimensional model 
with constant material properties.  
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Figure 1: Transpiration Cooling Model 

 
The boundary conditions for the transpiration cooling model are taken from Figure 1.  A 
fluid is injected into porous matrix at a constant mass flow rate, , with a 
temperature T

dotm,
fo. The temperature of the matrix at the entrance, x=0, is Tmo.  A flux is 

imposed at x=L from the environment which induces a constant temperature boundary 
condition at the exit, Tmw.  
 
The energy balance equations for the fluid and the matrix in non-dimensional form are 
used to define the governing differential equations for the transpiration cooling model.  
The energy equation for the fluid stated by Koh is, 
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and cp is the specific heat of the fluid, km is the effective conductivity of the matrix,  is 
the heat transfer coefficient for internal convection, and 

h�
Lx�� .  Equation (1) states that 



heat is transferred from the matrix to the fluid via convection [1].  Conduction from the 
matrix to the fluid raises the enthalpy of the fluid and is given by, 
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Matrix Temperature Distribution 
 
From the energy balance equations for the transpiration cooling model, the steady state 
equations for the fluid and matrix temperature distributions are derived [1].  Equation (3) 
can be solved in terms of the fluid temperature and substituted into equation (1).  The 
resulting equation is a linear homogeneous second order ordinary differential equation 
with constant coefficients previously solved by Koh, which describes the non-
dimensional steady-state matrix temperature:   
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The boundary conditions imposed upon the matrix are used to solve equation (5) which 
are given by,  
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Imposing the boundary conditions on the solution of equation (5) results in the non-
dimensional matrix temperature,  
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where, r1 and r2 are the roots of the characteristic equation defined by equation (5) shown 
here,  
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Equation (8) is the steady state transpiration cooling equation for the matrix temperature 
along the � coordinate.  This equation, first derived by Koh, will be necessary for 
determining an alternative steady state equation for the fluid temperature distribution, 
which is discussed in the following section.  
 
Derivation of Alternative Fluid Temperature Distribution 
 
The fluid temperature distribution is determined by substituting the matrix temperature 
solution into one of the energy balance equations, equation (1) or (3).  However, the 
results from this substitution produce different results based upon which equation is 
chosen for the substitution.  The fluid temperature presented by Koh utilized equation (3).  
However, no boundary condition for the fluid at the entrance is required.  Since, the 
results from this method do not permit entrance conditions from being incorporated, an 
alternative solution which imposes a fluid entrance boundary condition is derived.  
 
Equation (1) can be used to solve for the fluid temperature.  The fluid entrance boundary 
condition can be incorporated into the solution since equation (1) is a non-homogeneous 
first order differential equation of the form, 
 

mf
f AA

d
d

��
�

�
��  

 
where �m is defined by equation (8).  The solution to equation (11) is approached by first 
multiplying equation (11) by the function, , which produces, �Ae
 

m
A

f
AfA AeAe

d
d

e ��
�

�
���

��  

 
Noting that the left-hand side of equation (12) is equivalent to the derivative � �f

A
x eD �

�
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the following expression can be obtained, 
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where C is a constant of integration and defined by the boundary condition imposed upon 
this problem.  Substituting equation (8) into equation (12) and solving for � yields, f

(9) 
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which can be simplified to the following form, 
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The constant of integration is solved by imposing the fluid entrance boundary condition, 
which is defined as, 
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The boundary condition is imposed on equation (15) and results in the following 
expression for the non-dimensional fluid temperature distribution, 
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which simplifies to 
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Equation (18) states the steady state transpiration cooling equation for the fluid 
temperature.  It is a function of primarily of the distance along the x direction, and based 
on the boundary condition of the matrix and fluid at the entrance of the porous matrix. 
 
Results 
 
The steady state transpiration cooling equations for the fluid and the matrix are functions 
of a single variable, � .  In Figure 2, the alternative fluid temperature solution and steady 
state matrix temperature are plotted versus the non-dimensionalized coordinate, � .  The 
entrance fluid boundary condition is assumed to be the temperature of the fluid reservoir 
with a temperature of Tfo=Tfi=600 �F and the matrix boundary condition at the entrance is 
Tmo = 500 �F.  At the exit, Tmw is 1500 �F, which is due to the environmental heating. 
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Figure 2: Fluid and Matrix Temperature Distributions along the Porous Matrix 
 
Using equation (8) and (18), the alternative fluid temperature solution and the matrix 
solution are shown in Figure 2.  The fluid and matrix temperature profiles along the � 
direction obey the conservation of energy and satisfy the physical boundary conditions 
imposed upon the model. A comparison of the results from the Koh study and the 
alternative method of calculating the fluid temperatures is shown in Figure 3. 
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Figure 3: Fluid Temperature Solution Comparison
 
In Figure 3, the solution presented in [1] results in an entrance fluid tem
not adhere to the boundary conditions imposed upon the system.  Howe
alternative solution given by equation (18) has an imposed boundary co
satisfies the physical boundary conditions of the transpiration cooling m
 
The parameters that govern the temperature distribution for the fluid and
and B defined in equations (1) and (3).  The inverse of the thermal cond
solid matrix is defined in parameter B.  The effect of varying the therma
shown in Figure 4.  
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Figure 4: Predicted Temperature Distributions with Varying Thermal Conductivity  
 
Since increasing the thermal conductivity results in a decreasing B, the temperature 
distribution changes dramatically with the amount of heat that is allowed to flow through 
the matrix.  It is also clear that the temperature distribution is highly dependent on the 
solid matrix conductivity. The volumetric heat transfer coefficient is represented in 
parameter A.  The effect of varying A is illustrated in Figure 5.  
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Figure 5: Predicted Temperature Distributions with Varying Heat Transfer Coefficient  

 
The heat transfer coefficient does not significantly change the temperature distribution of 
the solid matrix.  For increasing heat transfer coefficient, h’, the fluid temperature (not 
shown in Figure 5) will converge on the matrix temperature solution, however it will not 
significantly affect the matrix temperature distribution. This phenomenon demonstrated 
by the present analysis therefore conforms to previous numerical studies of porous media 
heat transfer [3]. 
 
The results of the present analysis are also compared to previous experimental data [4].  
The experimental data is based on air flowing through uniformly packed beds at various 
Reynolds numbers. Spheres were used in the experiment approximately .5 inch in 
diameter. However, for materials that would fit transpiration cooling applications, the 
porous matrix diameter would be reduced by several magnitudes of order.  The reduction 
in the porous matrix diameter affects the mass flow rate, which is accounted for in the 
present analysis.  Iron-constantan thermocouples were imbedded in the spheres to 
determine matrix temperatures.  Gas temperatures were determined by an energy balance 
equation in finite difference form [1].  



0.01

0.10

1.00

0 0.2 0.4 0.6 0.8 1

�

Experimental Data
            Matrix

Experimental Data
              Fluid

Matrix

Matrix

Fluid

Fluid

A=23.8
B=1.38

A=9.2
B=6.85

Figure 6: Comparison of Theoretical and Experimental Results 
 
As illustrated in Figure 6, the analysis agrees well with the two sets of experimental data. 
For the large heat transfer coefficient condition, characterized by a higher value of A, it is 
seen that the difference between the matrix and fluid temperatures is small.  For the small 
thermal conductivity condition, characterized by a higher value for B, the heat flow 
becomes significantly reduced agreeing with both the experimental data and previous 
numerical studies.   
 
Conclusion 
 
The fluid temperature solution presented by Koh produces results that are not physically 
realistic.  An alternative method for deriving the steady state fluid temperature has been 
presented.  This method allows for the inclusion of the entrance boundary condition for 
the fluid.  Furthermore, the two solutions are compared to one another and the alternative 
fluid solution adheres to the physical system requirements.  The effect of increased 
thermal conductivity of the solid matrix is significant.  However, the effect of changing 
the volumetric heat transfer coefficient was small.  The results also compared well to the 
existing experimental data. This analysis may further the understanding not only of 
steady state behavior, but also the transient responses in transpiration cooling.  
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Nomenclature 
 
A eq. (12), dimensionless 
B eq. (13), dimensionless 
cp specific heat (Btu/lb.-F) 
h’ volumetric heat transfer coefficient (Btu/hr-ft3-F) 
k thermal conductivity (Btu/hr-ft-F) 
l length (ft.) 

dotm,  mass flow rate, (lb./hr) 
T Temperature, (F) 
x distance measured from inlet of matrix (ft.) 
� dimensionless variable, lx  

� dimensionless variable, 
fimw

fi

TT
TT
�

�

 

 
Subscripts 
 
m matrix solid 
f fluid 
o inlet (x=0) 
fi fluid reservoir 
fo fluid inlet (x=0) 
w wall (x=L) 
 


	Return to Main Menu
	Return to Table of Contents
	STEADY STATE TRANSPIRATION COOLING IN POROUS MEDIA UNDER LOCAL, NON-THERMAL EQUILBRIUM FLUID FLOW

